• 今日66折
  • 天天BUY

初探機器學習演算法

Machine Learning Algorithms

  • 定價:480
  • 優惠價:79379
  • 優惠期限:2019年01月03日止
運送方式:
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖、全球
  • 可取貨點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
    香港、澳門、新加坡、馬來西亞
載入中...
 

內容簡介

熱門資料科學與機器學習演算法學習指南

  本書介紹並說明資料科學領域常見且重要的機器學習演算法,這些演算法可用於監督式與非監督學習、強化學習與半監督式學習。書中所討論的演算法包括線性迴歸、logistic迴歸、SVM、樸素貝氏、k-means、隨機森林、TensorFlow與特徵工程。

  你將會學到如何使用這些演算法來解決問題,以及它們的工作原理。同時也會介紹自然語言處理與推薦系統,以協助同時執行多種演算法。

  最後將會知道如何挑選正確的機器學習演算法,來為你的問題進行分群、分類或迴歸。

  你將學會:
  • 熟悉機器學習的重要元素
  • 瞭解特徵選擇與特徵工程流程
  • 平衡線性迴歸的效能與誤差
  • 建立資料模型,與使用各種類型的演算法來瞭解它的工作方式
  • 微調SVM的參數
  • 實作資料集的群聚
  • 探索自然語言處理與推薦系統的概念
  • 從零開始建立機器學習架構
 

作者介紹

作者簡介

Giuseppe Bonaccorso


  Giuseppe Bonaccorso 是具備12年經驗的機器學習與大數據顧問,擁有義大利University of Catania電機工程學碩士,與義大利University of Rome,Tor Vergata和英國University of Essex的畢業後研究經驗。曾在各種商業領域擔任IT工作,包括公共行政、軍事、公用事業、保健、診斷與廣告,也曾經使用許多技術來開發與管理各種專案,包括Java、Python、Hadoop、Spark、Theano與TensorFlow。他的主要興趣是人工智慧、機器學習、資料科學與心靈哲學。
 

目錄

第 1 章 機器學習簡介
第 2 章 機器學習的重要元素
第 3 章 特徵選擇與特徵工程
第 4 章 線性迴歸
第 5 章 Logistic 迴歸
第 6 章 樸素貝氏
第 7 章 支援向量機
第 8 章 決策樹與整體學習
第 9 章 分群基礎
第 10 章 階層式分群
第 11 章 推薦系統簡介
第 12 章 自然語言處理簡介
第 13 章 NLP 的主題建模與情緒分析
第 14 章 深度學習與 TensorFlow 簡介
第 15 章 建立機器學習架構

 
 

詳細資料

  • ISBN:9789864766741
  • 規格:平裝 / 336頁 / 17 x 23 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣

最近瀏覽商品

 

相關活動

  • 【資訊月】高手在民間,技術創新無極限。電腦書59折起!
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 寶鼎商業書展
  • 瑞昇文化全書系

訂閱電子報

想獲得最新商品資訊,請訂閱免費電子報