活動倒數計時:  滿千再11%OFF 詳情

  • 今日66折
  • 天天BUY

深度學習:內行人的做法

Deep Learning: A Practitioner’s Approach

  • 定價:780
  • 優惠價:9702
  • 本商品單次購買10本85折663
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可取貨點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...
 

內容簡介

  雖然人們對機器學習的興趣已來到很高的程度,但過高的期望往往無法讓專案走得太遠。機器學習(尤其是深度神經網路)在您的組織中,究竟能發揮什麼樣真正的作用呢?這本實戰指南不僅提供此主題相關的最實用資訊,還可協助您開始構建高效的深度學習網路。

  本書提供了許多關於深度學習調整、平行化、向量化與構建流程的基礎知識。雖然本書是引用開源Deeplearning4j(DL4J)函式庫來開發生產級工作流程,但裡頭所介紹的基礎知識,適用於任何函式庫。透過真實世界中的範例,您將學習到如何運用DL4J訓練深度網路架構,以及在Spark與Hadoop上運行深度學習工作流程的方法與策略。

  ■ 深入了解機器學習、尤其是深度學習的整體概念
  ■ 了解神經網路進化到深度網路的歷程
  ■ 探索一些主要的深度網路架構,包括卷積網路(CNN)與遞廻網路(RNN)
  ■ 學習如何針對特定的問題,找出正確對應的深度網路架構
  ■ 針對一般神經網路與特定的深度網路架構,完整介紹調整相關的基礎知識
  ■ 透過DL4J的工作流程工具DataVec,把向量化技術運用到不同的資料型態上
  ■ 了解如何在Spark與Hadoop 上,以原生方式使用DL4J
 

作者介紹

作者簡介

Josh Patterson


  Josh Patterson is currently VP of Field Engineering for Skymind. Previously, Josh worked as a Principal Solutions Architect at Cloudera and as a machine learning and distributed systems engineer at the Tennessee Valley Authority.

Adam Gibson

  Adam Gibson is the CTO of Skymind. Adam has worked with Fortune 500 companies, hedge funds, PR firms, and startup accelerators to create their machine learning projects. He has a strong track record helping companies handle and interpret big realtime data.
 
 

目錄

前言
chapter 01 機器學習
chapter 02 神經網路和深度學習的基礎
chapter 03 深度網路基礎
chapter 04 深度網路的主要架構
chapter 05 打造深度網路
chapter 06 深度網路的調整
chapter 07 特定深度網路架構的調整
chapter 08 向量化
chapter 09 Spark 上使用深度學習與 DL4J
appendix A 什麼是人工智慧?
appendix B RL4J 與強化學習
appendix C 大家都應該知道的幾個數字
appendix D 神經網路與反向傳播:數學做法
appendix E 使用 ND4J API
appendix F 使用 DataVec
appendix G 使用 DL4J 的源程式碼
appendix H 設定 DL4J 專案
appendix I 設定 DL4J 專案
appendix J DL4J 安裝問題排除
索引
 

詳細資料

  • ISBN:9789865020262
  • 規格:平裝 / 576頁 / 18.5 x 23 x 2.88 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣

會員評鑑 TOP

會員評鑑等級 ,共 1 位評分。

感謝您為本商品發表您的看法,這是專屬於博客來會員的發表園地。 看更多書評請前往 【讀者書評】專區

最近瀏覽商品

 

相關活動

  • 語法與資料庫的最佳化應用。《優化SQL》
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 2019寶瓶文化全書系展,單書79折,任選2本75折
  • 【我的老派作風│二書75折】越是老派,越是純真
  • 圖書79折,漫畫、輕小說類85折,滿$699再95折

訂閱電子報

想獲得最新商品資訊,請訂閱免費電子報