• 每日一句
  • 今日66折
  • 天天BUY

數學女孩 龐加萊猜想

数学ガール ポアンカレ予想

  • 定價:450
  • 優惠價:79356
  • 優惠期限:2020年01月02日止
  • 再折扣12/7會員日-鑽石、白金會員結帳滿千再9折(部份除外)
  • 再折扣12/7會員日-黃金、一般會員結帳滿千再95折,部份除外
  • 【分級買就送】會員日:分級會員OPEN POINT點數最高5倍送,也可改選1%購物金(部份除外) 詳情
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可取貨點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
載入中...

優惠組合

買了此商品的人,也買了...

 

內容簡介

日本数学会出版賞得主結城浩的科普輕小說
數學迷們引頸盼望的本傳續集
獎金100萬美元,百年以來無人能解的世紀難題終得證明!

  不管是外型、氣質,還是態度,都十分優秀,
  在世間來來去去,卻不會顯露出任何瑕疵。
  ——清少納言《枕草子》

  柯尼斯堡七橋問題、克萊因瓶、非歐幾里得幾何學…
  形狀、形狀、形狀。所見即所得,這就是形狀。
  ——真是如此嗎?
  這份感情,又是什麼形狀?

  改變位置,形狀也會跟著改變。
  改變角度,形狀也會跟著改變。
  真可說是所見即所得嗎?
  聲音的形狀、香味的形狀、溫度的形狀。
  看不到的東西,就沒有形狀了嗎?

  小小的鑰匙。
  小小的事物可以一手掌握。
  廣大的宇宙。
  廣大的空間是我的容身之處。

  然而過小的事物難以掌握其形狀。
  過大的空間亦難以掌握其形狀。
  回過頭來,自己的形狀又是什麼樣子呢?

  不如用手中小之又小的鑰匙,打開眼前的門,
  跳入廣大的宇宙內吧。

  那是為了有一天,找到自己的形狀。
  那是為了有一天——找到你的形狀。

  這是「我」和三位女孩
  教人怦然心動的數學對話。

 

作者介紹

作者簡介

結城  浩


  1963年生。2014年獲得日本数学会出版賞。執筆寫作有關程式語言、設計模式、密碼、數學等等領域的入門書。最新著作是「數學女孩系列」。是一個最喜歡巴哈「賦格的藝術」作品的新教基督徒。作品包括:2011《數學女孩/費馬最後定理》,2012《數學女孩/哥德爾不完備定理》,2013《數學女孩/隨機演算法》、2014《數學女孩/伽羅瓦理論》(世茂出版)、2016—2017《數學女孩祕密筆記》系列。

  www.hyuki.com/

審訂者簡介

洪萬生


  美國紐約城市大學(CUNY)科學史博士,國立台灣師範大學數學系學士、碩士。國立台灣師範大學數學系教授兼主任(2007/8/1-2009/7/31)、台灣數學教育學會理事長(2007-2009)、國際科學史學院通訊會員、Historia Mathematica(國際數學史雜誌)編輯委員、《HPM通訊》發行人、台灣數學(虛擬)博物館創始人之一。

譯者簡介

陳朕疆


  自由譯者。清大生科學士、政大財管碩士、京都大學農學部交換一年、台大經濟系研究助理。碰到新的領域就想一探究竟,成為譯者是偶然,卻也越做越喜歡,歡迎批評指教。個人網頁 chenzjkyoto.xyz/index.html

 
 

目錄

序章

第一章 柯尼斯七橋問題
1.1 由梨
1.2 一筆劃問題
1.3 從簡單的圖開始
1.4 圖與次數
1.5 這也是數學嗎?
1.6 《逆定理》的證明

第二章 莫比烏斯帶、克萊因瓶
2.1 頂樓
2.1.1 蒂蒂
2.1.2 莫比烏斯帶
2.2 教室
2.2.1 自習時間
2.3 圖書室
2.3.1 米爾迦
2.3.2 分類
2.3.3 閉曲面的分類
2.3.4 可定向曲面
2.3.5 不可定向曲面
2.3.6 展開圖
2.3.7 連通和
2.4 歸途
2.4.1 像質數般

第三章 蒂蒂的周圍
3.1 家人的周圍
3.1.1 由梨
3.2 0的周圍
3.2.1 問題練習
3.2.2 全等與相似
3.2.3 對應關係
3.3 實數a的周圍
3.3.1 全等、相似、同胚
3.3.2 連續函數
3.4 點a的周圍
3.4.1 前往異世界的準備
3.4.2 《距離的世界》實數a的δ鄰域
3.4.3 《距離的世界》開集
3.4.4 《距離的世界》開集的性質
3.4.5 從《距離的世界》到《拓樸的世界》之旅途
3.4.6 《拓樸的世界》開集的公理
3.4.7 《拓樸的世界》開鄰域
3.4.8 《拓樸的世界》連續映射
3.4.9 同胚映射
3.4.10 不變性
3.5 蒂蒂的周圍

第四章 非歐幾里得幾何學
4.1 球面幾何學
4.1.1 地球上的最短路徑
4.2 現在與未來之間
4.2.1 高中
4.3 雙曲幾何學
4.3.1 所謂的學習
4.3.2 非歐幾里得幾何學
4.3.3 鮑耶與羅巴切夫斯基
4.3.4 自家
4.4 跳脫出畢氏定理
4.4.1 麗莎
4.4.2 距離的定義
4.4.3 龐加萊圓盤模型
4.4.4 半平面模型
4.5 超越平行線公理
4.6 自家

第五章 跨入黎曼流形
5.1 跳脫出日常
5.1.1 輪到自己接受測試
5.1.2 為了打倒龍
5.1.3 由梨的疑問
5.1.4 考慮低維情形
5.1.5 會歪成甚麼樣子呢
5.2 跨入非日常
5.2.1 櫻花樹下
5.2.2 內外翻轉
5.2.3 展開圖
5.2.4 龐加萊猜想
5.2.5 二維球面
5.2.6 三維球面
5.3 要跨入,還是要跳出?
5.3.1 醒過來時
5.3.2 Eulerians

第六章 掌握看不到的形狀
6.1 掌握形狀
6.1.1 沉默的形狀
6.1.2 問題的形狀
6.1.3 發現
6.2 以群掌握形狀
6.2.1 以數作為線索
6.2.2 以何作為線索?
6.3 以自環掌握形狀
6.3.1 自環
6.3.2 自環上的同倫
6.3.3 同倫類
6.3.4 同倫群
6.4 掌握球面
6.4.1 自家
6.4.2 一維球面的基本群
6.4.3 二維球面的基本群
6.4.4 三維球面的基本群
6.4.5 龐加萊猜想
6.5 被限制的形狀
6.5.1 確認條件
6.5.2 掌握沒能看清的自己

第七章 微分方程式的溫度
7.1 微分方程式
7.1.1 音樂教室
7.1.2 教室
7.1.3 指數函數
7.1.4 三角函數
7.1.5 微分方程式的目的
7.1.6 彈簧的振盪
7.2 牛頓冷卻定律
7.2.1 下午的授課

第八章 絕妙定理
8.1 車站前
8.1.1 由梨
8.1.2 讓人訝異的事
8.2 自家
8.2.1 媽媽
8.2.2 珍稀之物
8.3 圖書室
8.3.1 蒂蒂
8.3.2 理所當然的事
8.4 《學倉》
8.4.1 米爾迦
8.4.2 傾聽
8.4.3 解謎
8.4.4 高斯曲率
8.4.5 絕妙定理
8.4.6 齊性與各向同性
8.4.7 回禮

第九章 靈光一閃與毅力
9.1 三角函數訓練
9.1.1 靈光一閃與毅力
9.1.2 單位圓
9.1.3 sin曲線
9.1.4 從旋轉矩陣到和角公式
9.1.5 從和角公式到積化和差公式
9.1.6 媽媽
9.2 合格判定模擬考
9.2.1 不要緊張
9.2.2 不要被騙到
9.2.3 需要靈光一閃還是需要毅力
9.3 看穿算式的本質
9.3.1 機率密度函數的研究
9.3.2 拉普拉斯積分的研究
9.4 傅立葉展開
9.4.1 靈光一閃
9.4.2 傅立葉展開
9.4.3 超越毅力
9.4.4 超越靈光一閃

第十章 龐加萊猜想
10.1 開放式研討會
10.1.1 課程結束之後
10.1.2 午餐時間
10.2 龐加萊
10.2.1 形狀
10.2.2 龐加萊猜想
10.2.3 瑟斯頓的幾何化猜想
10.2.4 哈密頓的里奇流方程式
10.3 數學家們
10.3.1 年表
10.3.2 菲爾茲獎
10.3.3 千禧年大獎難題
10.4 哈密頓
10.4.1 里奇流方程式
10.4.2 傅立葉的熱傳導方程式
10.4.3 想法的逆轉
10.4.4 哈密頓計畫
10.5 佩雷爾曼
10.5.1 佩雷爾曼的論文
10.5.2 再多前進一步
10.6 傅立葉
10.6.1 傅立葉的時代
10.6.2 熱傳導方程式
10.6.3 變數分離法
10.6.4 重疊積分
10.6.5 傅立葉積分
10.6.6 觀察類似物
10.6.7 回到里奇流方程式
10.7 我們
10.7.1 從過去到未來
10.7.2 若冬天來到
10.7.3 春天就不遠了
尾聲
後記
索引
 
 



  給讀者

  本書中出現了各式各樣的數學問題,包括簡單到連小學生都懂的問題,以至於連大學生都感到困難的問題。

  除了使用語言、圖形,以及程式之外,也會使用算式來表現登場人物的思考脈絡。

  如果不明白算式的意義,可將算式放一邊,先去追隨故事情節發展。蒂蒂與由梨會陪伴著你一起走下去。

  而對數學很拿手的讀者,除了故事之外,請務必跟隨算式的腳步拾級而上。如此一來,可將故事的全貌看得更清楚。
 
 

詳細資料

  • ISBN:9789578799738
  • 叢書系列:數學館
  • 規格:平裝 / 416頁 / 14.8 x 21 x 1.29 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
 

內容連載

第一章 柯尼斯堡七橋問題
 
幾何學中,處理距離的領域一直都很受人矚目。
 
然而除此之外,還有個領域幾乎從來沒人提到。
 
首先談及這個領域的萊布尼茲,
 
將其稱作「位置的幾何學」。
 
——李昂哈德‧歐拉(Leonhard Euler)
 
1.1 由梨
 
「最近哥哥給人的感覺好像不太一樣耶。」由梨說著。
 
今天是星期六的下午,這裡是我的房間。
 
就讀國中三年級的表妹,由梨來找我玩。
 
小時候就常和我一起玩的她,總是叫我《哥哥》。
 
綁著栗色馬尾,穿著牛仔褲的她,從我的書架上抽起了幾本書,慵懶地翻著閱讀。
 
「給人的感覺不一樣?」我反問她。
 
「嗯——總覺得有點過度冷靜,感覺很無聊喵。」
 
由梨一邊翻著書頁,一邊用著她獨特的貓語這麼說。
 
「是嗎?畢竟我也是高三生,也得有些考生的樣子啊。」
 
「不對喔。」她馬上否定了我的辯解。「哥哥以前不是都會和我玩很多不同的遊戲嗎?但是最近——應該說暑假結束後,就都沒怎麼理我了,明明都已經秋天了耶!」
 
說完後,由梨把手上的書啪一聲闔起。那是一本給高中生讀的數學書籍。雖然裡面有寫到一些比較難的內容,但由梨的話應該也讀得懂吧。
 
「明明都已經秋天了……不不不,就是因為已經是秋天了,身為考生,得開始認真讀書啊。再說,由梨也是考生不是嗎?」
 
「你是想說,國中三年級也該有點考生的樣子嗎喵?」
 
像這樣刁蠻的由梨,明年也要考高中了。她的成績並不差,所以應該能考進她想讀的學校——也就是我的高中吧。
 
「可是學校好無聊喔。」由梨邊嘆氣邊說。
 
啊……因為《那傢伙》已經轉學了是嗎?
 
1.2 一筆劃問題
 
「對了,由梨知道柯尼斯堡七橋問題嗎?」
 
「柯尼……什麼啊?」由梨回道。
 
「柯尼斯堡。這是一個城市的名字。這個城市內有七座橋。」
 
「這什麼啊,聽起來好像奇幻小說喔。『這個城市有七座神聖的橋,勇者們需通過這些橋,才能打敗龍——』」
 
「不是啦,不是那種故事。柯尼斯堡七橋問題是歷史上很有名的數學問題喔。」
 
「是這樣嗎?」
 
「也就是所謂的一筆劃問題喔!」
 
「是只能用一筆劃通過所有邊的那個嗎?」
 
「是啊。說得更仔細一點,就像這樣。柯尼斯堡這個城市內有河流通過,市內有七座橋,如圖所示。」

最近瀏覽商品

 

相關活動

  • 五百年天文學+物理學經典,終於到齊!《站在巨人肩上》復刻精裝版
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 【2019大塊全書系】為工作折腰,在日常靠腰!
  • 參展49折起,12/6-7 結帳輸入代碼現折20元
  • 2019寶瓶文化全書系展,單書79折,任選2本75折

訂閱電子報

想獲得最新商品資訊,請訂閱免費電子報