周年慶
  • 電子書
Python資料科學自學聖經:不只是建模!用實戰帶你預測趨勢、找出問題與發現價值 (電子書)
試閱
收藏試閱本 67
人收藏
適合平板

Python資料科學自學聖經:不只是建模!用實戰帶你預測趨勢、找出問題與發現價值 (電子書)

  • 定價:580
載入中...

電子書閱讀軟體

支援瀏覽器說明

APP下載:

  • 分享
 

內容簡介

  網路書店年度百大電腦資訊暢銷書
  《Python自學聖經》系列力作

  運用Python掌握資料科學的價值
  讓人工智慧機器學習找出趨勢的關鍵密碼

  完整涵蓋Python資料科學技術,從開發工具、資料預處理、
  機器學習、深度學習到模型訓練進化一應俱全!

  給需要本書的人:
  ★想進入Python資料科學領域,又不知怎麼切入的人
  ★面對資料科學龐大又雜亂的理論與資訊卻不知如何下手的人
  ★想快速且有系統收集大量資料,並提高處理運用效率的人
  ★想利用大量資料進行分析,找出隱藏訊息與趨勢以協助決策的人
  ★想運用資料數據訓練人工智慧模型,開發適用的演算法進行預測與解決問題的人

  隨著AI人工智慧帶來的科技革命,資料科學的應用正在改變你我的生活。如何由龐大的資料數據中擷取爬梳出有價值的資訊,判斷決策,甚至能預測趨勢、掌握契機,是資料科學為現代社會帶來的新視野。
 
  資料科學橫跨多個領域,涵蓋數學、統計與電腦科學等面向。如果想有系統的進入資料科學領域,歡迎藉由本書循序漸進的學習。書中除了有資料科學的觀念,還有技術應用與發展方向,讓每個艱澀觀念都能在範例實作的引導下有著更清楚的輪廓,讓你一探資料科學迷人的樣貌。

  【重要關鍵】
  ■應用工具:雲端開發平台(Google Colab)、資料科學工具(Numpy、Pandas、Matplotlib、Seaborn)、網路爬蟲(requests、BeautifulSoup)。

  ■資料預處理:資料清洗、缺失值、重複值及異常值的處理、資料檢查、資料合併、樞紐分析表、圖片增量,以及資料標準化、資料轉換與特徵選擇。

  ■機器學習:學習工具(Scikit-Learn)、非監督式學習(K-means演算法、DBSCAN演算法、PCA降維演算法)、監督式學習分類演算法(Scikit-Learn資料集、K近鄰演算法、單純貝氏演算法、決策樹演算法、隨機森林演算法)、監督式學習迴歸演算法(線性迴歸演算法、邏輯迴歸演算法、支持向量機演算法)。

  ■深度學習:學習工具(TensorFlow、Keras)、深度神經網路(DNN)、MNIST手寫數字圖片辨識實作、Gradio模組(深度學習成果展示、過擬合)、卷積神經網路(CNN)與循環神經網路(RNN)。

  ■模型訓練進化:預訓練模型、遷移學習、深度學習參數調校、hyperas參數調校神器,以及手寫數字辨識參數調校。

  【超值學習資源】
  獨家收錄「Python資料科學關鍵影音教學」、全書範例程式檔

本書特色

  ■深入淺出,只要具備基礎Python程式語言能力即可輕鬆上手。
  ■標示出重要觀念,在學習的過程中不會錯失關鍵內容。
  ■應用範例導向,每個觀念皆附實用案例,不怕學不會。
  ■不使用艱澀數學推導資料科學原理,而以淺顯易懂的文字解說學理。
  ■實作圖片增量及遷移學習,即使少量資料也可訓練出實用模型。
  ■實作機器學習與深度學習模型參數調校,輕鬆建立完美模型。
 

作者介紹

作者簡介

文淵閣工作室

  一個致力於資訊圖書創作二十餘載的工作團隊,擅長用輕鬆詼諧的筆觸,深入淺出介紹難懂的 IT 技術,並以範例帶領讀者學習電腦應用的大小事。

  我們不賣弄深奧的專有名辭,奮力堅持吸收新知的態度,誠懇地與讀者分享在學習路上的點點滴滴,讓軟體成為每個人改善生活應用、提昇工作效率的工具。

  舉凡程式開發、文書處理、美工動畫、攝影修片、網頁製作,都是我們專注的重點,而不同領域有各自專業的作者組成,以進行書籍的規劃與編寫。一直以來,感謝許多讀者與學校老師的支持,選定為自修用書或授課教材。衷心期待能盡我們的心力,幫助每一位讀者燃燒心中的小宇宙,用學習的成果在自己的領域裡發光發熱!

  我們期待自己能在每一本創作中注入快快樂樂的心情來分享, 也期待讀者能在這樣的氛圍下快快樂樂的學習。

  官方網站:www.e-happy.com.tw
  FB粉絲團:www.facebook.com/ehappytw
 
 

目錄

資料科學工具篇

第1章 進入資料科學的學習殿堂


1.1 認識資料科學
1.2 Google Colab:雲端的開發平台
1.3 Colab 的筆記功能

第2章 資料科學神器:Numpy 與Pandas

2.1 Numpy:高速運算的解決方案
2.2 Numpy 陣列建立
2.3 Numpy 陣列取值
2.4 Numpy 的陣列運算功能
2.5 Pandas:資料處理分析的強大工具
2.6 Series 的使用
2.7 DataFrame 的建立
2.8 Pandas DataFrame 資料取值
2.9 DataFrame 資料操作

第3章 資料收集:檔案存取與網路爬蟲

3.1 資料來源的取得
3.2 CSV 檔案的讀取
3.3 JSON 資料的讀取
3.4 Excel 試算表檔案的讀取
3.5 HTML 網頁資料讀取
3.6 儲存資料為檔案
3.7 認識網路爬蟲
3.8 requests 模組:讀取網站檔案
3.9 BeautifulSoup 模組:網頁解析
3.10 文字及檔案資料的收集

第4章 資訊圖表化:Matplotlib 與Seaborn

4.1 Matplotlib:資訊視覺化的核心工具
4.2 折線圖:plot
4.3 長條圖與橫條圖:bar、barh
4.4 圓形圖:pie
4.5 直方圖:hist
4.6 散佈圖:scatter
4.7 線箱圖:boxplot
4.8 設定圖表區:figure
4.9 在圖表區加入多張圖表:subplot、axes
4.10 Pandas 繪圖應用
4.11 Seaborn:更美觀的圖表工具

資料預處理篇

第5章 資料預處理:資料清洗及圖片增量


5.1 資料清洗處理
5.2 資料檢查
5.3 資料合併
5.4 樞紐分析表
5.5 圖片增量

第6章 資料預處理:標準化、資料轉換與特徵選擇

6.1 Scikit-Learn:機器學習的開發工具
6.2 數值資料標準化
6.3 非數值資料轉換
6.4 認識特徵選擇
6.5 使用Pandas 進行特徵選擇
6.6 使用Scikit-Learn 進行特徵選擇

機器學習篇

第7章 機器學習:非監督式學習


7.1 認識機器學習
7.2 K-means 演算法
7.3 DBSCAN 演算法
7.4 降維演算法

第8章 機器學習:監督式學習分類演算法

8.1 Scikit-Learn 資料集
8.2 K 近鄰演算法
8.3 單純貝氏演算法
8.4 決策樹演算法
8.5 隨機森林演算法

第9章 機器學習:監督式學習迴歸演算法

9.1 線性迴歸演算法
9.2 邏輯迴歸演算法
9.3 支持向量機演算法

深度學習篇

第10章 深度學習:深度神經網路(DNN)


10.1 認識深度學習
10.2 認識深度神經網路(DNN)
10.3 實作MNIST 手寫數字圖片辨識
10.4 Gradio 模組:深度學習成果展示
10.5 過擬合

第11章 深度學習:卷積神經網路(CNN)

11.1 認識卷積神經網路(CNN)
11.2 實作貓狗圖片辨識

第12章 深度學習:循環神經網路(RNN)

12.1 認識循環神經網路(RNN)
12.2 下載台灣股市資料
12.3 實作台灣股票市場股價預測

模型訓練進化篇

第13章 預訓練模型及遷移學習


13.1 預訓練模型
13.2 遷移學習

第14章 深度學習參數調校

14.1 hyperas 模組:參數調校神器
14.2 手寫數字辨識參數調校

 
 

詳細資料

  • ISBN:9786263241657
  • EISBN:9786263243316
  • 規格:普通級 / 初版
  • 出版地:台灣
  • 檔案格式:EPUB固定版型
  • 建議閱讀裝置:平板
  • TTS語音朗讀功能:無
  • 檔案大小:54.0MB

最近瀏覽

 

相關活動

  • 【自然科普、電腦資訊】投資新手也ok!躺贏人生,打造月月PAY財富,電子書6折起
 

購物說明

使用電子書服務即為同意『博客來數位內容服務條款』請詳見客服中心說明。

自備暢通的網際網路連線及符合博客來支援的行動裝置、電腦作為閱讀工具,支援版本如下:

瀏覽器閱讀:無需安裝,即可閱讀。支援Safari (14以上版本)、Chrome (103以上版本) 、Edge瀏覽器 (106以上版本)。

APP閱讀:支援IOS13及Android 7以上系統。

電子書、 電子雜誌因版本屬性因素,恕無法比照紙本書籍提供MP3、DVD實體光碟,亦無提供相關影音檔案下載,請先確認無此需求再行下單購買。

請注意:

博客來電子書服務所使用之軟體程式及其支援行動裝置之可用版本隨時會更新調整,請隨時留意且主動查詢調整之內容。並請定時更新您的行動裝置作業系統版本,以確保本服務運作正常。若因個人裝置因素(如:其他應用程式衝突、裝置記憶體不足、行動裝置支援版本無法升級),無法使用博客來電子書閱讀服務或影響服務效能,需自行進行排除待符合博客來支援項目再行閱讀。

退換貨說明:

電子書購買前請務必先行試閱,不提供10天的猶豫期。

下列商品購買後博客來不提供10天的猶豫期,請務必詳閱商品說明並再次確認確有購買該項商品之需求及意願時始下單購買,有任何疑問並請先聯繫博客來客服詢問:

1.易於腐敗、保存期限較短或解約時即將逾期。
2.客製化之商品。
3.報紙、期刊或雜誌。
4.經消費者拆封之影音商品或電腦軟體。
5.下載版軟體、資訊及電子書、有聲書及影音.課程
6.涉及個人衛生,並經消費者拆封之商品,如:內衣褲、刮鬍刀…等。
7.藝文展覽票券、藝文表演票券。