內容連載
頁數 1/3
賭徒的難題—古典機率的誕生
十六世紀,在法國的一個小酒館中坐著兩個賭徒。時已夜深,周圍的人都已經回去了,但這兩個賭徒仍然沒有要回家的意思,這讓酒館的老闆很不高興,他催促著這兩個賭徒趕快回家,自己也好打烊休息。
但這兩個賭徒仍然沒有回家的意思。
賭徒們每人拿出七個金幣做為賭資,並制定好規則:一共玩七局紙牌,贏的局數多的人就可以拿走兩個人共十四個金幣。遊戲開始後賭徒甲的運氣不錯,他連續贏了兩局。這時酒館老闆突然走過來趕他們離店,不管賭徒們說什麼好話,都無法改變老闆的決定,沒有辦法,兩人只能提前結束了比賽。
當賭徒們走出酒館,賭博被迫中斷而無法再次展開,他們開始為怎麼分配金幣而爭吵起來,賭徒乙認為,既然遊戲能再繼續,那麼就應該按照局數來分,因為甲贏了兩局,所以應該分的其中四個金幣,剩下的局數兩個人互有勝負,所以要平均分,也就是甲是4+5=9 個金幣,而乙應該拿五個金幣。賭徒甲却認為,他已經贏了兩局,還剩下五局只要再贏得兩局就可以拿到全部的金幣,而對方需要贏四局才可以戰勝自己,所以自己分的金幣應該更多。
兩個賭徒為此爭論起來,他們決定求助於著名的數學家帕斯卡。但帕斯卡拿到這個難題的時候,卻得到和兩個賭徒都不一樣的答案。但帕斯卡覺得他們也各有各的道理,於是和另外一個數學家費馬討論起來。
在當時,數學的三大分支——分析學,代數學和幾何學都在萌芽中,數學家們正在無意識地努力為這三個數學學科做著最後的準備。但長久以來數學家們一直關注確定的數學,比如一個定理一定能證明或者證偽,一個方程一定有確定的根,但對於這種不確定的數學並沒有明確的認知。
在「不確定」數學發展的初期,法國數學家拉普拉斯做出了奠基性的工作。拉普拉斯從最簡單的不確定事件出發,扔一個兩面差不多的硬幣,出現正面和反面的可能性相同,而兩種可能性相加就能得到一定發生的結果(我們不考慮硬幣會恰好立起來)。拉普拉斯把這種事件發生的可能性大小叫做機率。
從此,一門有別於數學三大基礎的新的數學門類被創造出來。