內容連載
頁數 1/3
1-1 數學是什麼?
自然之書是用數學語言寫成的。
──克卜勒(Johannes Kepler, 1571-1630),天文學家
科學的皇后
數學是科學的皇后,而算術是數學的皇后。
──高斯(Carl Friedrich Gauss, 1777-1855),數學家
在小學二年級的課裡,我想要解釋數的重要性,就給小朋友講個故事,述說有位國王非常痛恨數字,甚至禁止在王國裡使用數字。我和小朋友一起努力想像沒有數字的世界會怎樣,結果發現生活會非常受限制。因為不准提兒童的年齡,所以各種年齡的兒童一律歸到同個年級。此外,你無法付錢買菜,也無法安排約會,因為你不准提在幾點或幾分。
這只是舉例說明數學在我們生活裡的重要性。隨著文明與技術的進步,我們的生活愈來愈需要倚賴數學。諾貝爾物理獎得主溫柏格(Steven Weinberg)在他寫的《終極理論之夢》(Dreams of a Final Theory)書中,專門花了兩章討論物理以外的題材,一章是數學,一章是哲學。在書中他說,他一再出乎意料的發現,數學多麼有用,而哲學多麼白費氣力。
要理解為什麼會這樣,必須理解數學是什麼,這可不是簡單的問題,就連專業數學家也難以回答。羅素(Bertrand Russell)曾經說數學家「都不懂自己在搞什麼。」(他對哲學家的批評更嚴苛,在他的眼裡,哲學家「只是瞎子在暗室裡尋找根本不存在的黑貓。」)他的說法在某種意義上確實為真:就是絕大多數的數學家都懶得自問數學是什麼,確切一點的說,沒想解釋他們到底在忙什麼。
想要回答這個問題,我們先從一個簡單的例子來看:3 + 2 = 5的意義是什麼?
在一年級班上,我請小朋友檢查3枝鉛筆加2枝鉛筆,結果有多少枝鉛筆。他們懂得「加」的意思就是「放在一起」,因此他們把3枝鉛筆與2枝鉛筆放在一起,然後再數有多少:答案是5枝鉛筆。接著我問:「當你把3枚鈕釦加2枚鈕釦,會得到多少鈕釦?」他們毫不猶豫的回答:「5枚鈕釦。」我再追問:「你們怎麼知道?」「由前一個問題就知道啦!」「但是前一個問題是關於鉛筆,也許會跟鈕釦不一樣啊?」他們就都笑了。這個問題並不是毫無意義的,恰恰相反,它隱含了數學的祕密──抽象。問題裡的東西是鉛筆、鈕釦,還是蘋果,都沒有關係,答案都相同,這也是我們可以抽象的說出3 + 2 = 5的理由。