讀書日
  • 電子書
人工智慧與深度學習--理論與Python實踐 (電子書)
試閱
收藏試閱本 84
人收藏
適合平板

人工智慧與深度學習--理論與Python實踐 (電子書)

  • 作者: 黃日鉦
  • 出版社:碁峰
  • 出版日期:2020/04/30
  • 語言:繁體中文
  • 定價:460
載入中...

電子書閱讀軟體

支援瀏覽器說明

APP下載:

  • 分享
 

內容簡介

  近年來,深度學習的相關演算法已被廣泛使用在電腦視覺(computer vision)、神經機器翻譯(neural machine translation)、神經風格轉換(neural style transfer)及聊天機器人(chatbots)等的應用。 
 
  雖然網路上已經提供了許多深度學習的各種演算法程式,但若只會使用程式卻不瞭解各種演算法的內涵,對於深度學習的領域只能是見樹不見林,無法真正體會深度學習的精要,亦無法有更深入的應用。因此,本書以人工智慧及深度學習的理論基礎著手,來陳述各種人工智慧演算法的理論基礎及完整數學推導過程,並輔以Python來進行各演算法的實踐,以達到精通人工智慧演算法的目的。 
 
本書特色 
 
  •從深度學習的預備知識開始,帶領讀者具備進入深度學習的領域知識。 
  •提供各種演算法的手算範例,讓讀者更能理解各演算法的過程。 
  •除介紹在深度學習已常用的方法外,更加介紹新近的各種演算法。 
  •推導各種演算法的梯度過程,使讀者更深入瞭解演算法的數理過程。 
  •各章節提供數個Python範例,完整帶領讀者使用深度學習來解決各類問題。 
 

作者介紹

作者簡介
 
黃日鉦 
 
  東吳大學資訊管理學系教授,任教科目包括人工智慧,深度學習,巨量資料分析,多變量分析及社群網路分析。相關研究共計超過60篇期刊論文及會議論文。
 

目錄

chapter 01 深度學習的預先知識 
1-1 線性代數 (Linear Algebra) 
1-2 微積分 (Calculus) 
1-3 最佳化理論 
1-4 統計學 
1-5 Python 程式語言介紹 

chapter 02 前饋式神經網路 
2-1 感知機 
2-2 多層感知機 
2-3 深度前饋式神經網路 
2-4 深度神經網路的梯度下降方式 
2-5 過適化問題 (Overfitting Problem) 
2-6 程式範例 

chapter 03 卷積神經網路 
3-1 卷積神經網路架構 
3-2 倒傳遞法進行參數更新 
3-3 數值範例 
3-4 殘差網路 
3-5 程式範例 

chapter 04 遞迴式神經網路 
4-1 遞迴式神經網路 
4-2 序列學習 (Sequential Learning) 
4-3 Elman 神經網路理論模型 
4-4 長短期記憶 (Long Short-Term Memory, LSTM) 模型 
4-5 Peephole 長短期記憶 (Peephole LSTM) 模型 
4-6 GRU (Gated Recurrent Unit) 模型 
4-7 雙向 LSTM (Bidirectional LSTM) 
4-8 程式範例 

chapter 05 侷限型波茲曼模型、深度信念網路及自編碼器 
5-1 侷限型波茲曼模型 (Restricted Boltzmann Machines, RBM) 
5-2 深度信念網路 (Deep Belief Networks, DBN) 
5-3 自編碼器 (Autoencoders) 
5-4 程式範例 

chapter 06 其他網路模型 
6-1 自迴歸模型 (Autoregressive Models) 
6-2 自生成模型 (Generative Models) 
6-3 神經圖靈機 
6-4 注意力模型 (Attention-based Models) 
6-5 程式範例 

chapter 07 強化學習 
7-1 馬可夫決策過程 
7-2 Bellman 方程式 
7-3 深度 Q- 網路 (Deep Q-Network, DQN) 
7-4 政策梯度 (Policy gradients) 
7-5 Advantage Actor-Critic (A2C) Methods 
7-6 程式範例
 

 
  目前常見用於開發人工智慧的程式語言有C++、Java、Python、LISP及Prolog等,其中Python可說是近年來最熱門的程式語言。主要原因是Python不像C++或Java般的困難,所以更適合快速開發程式,並且有豐富的函式庫支援Python進行各種的深度學習演算法。另一方面,LISP與Prolog都是早期發展人工智慧的程式語言,然而目前受限於使用者社群人數較少,所支援的函式庫並不如其他語言豐富,且LISP與Prolog語言的特色,目前大多都可以在Python中找得到,因此本書以Python來做為開發人工智慧與深度學習的語言程式。 
 
  雖然近年來有許多人工智慧及深度學習的書藉陸續出版,但都較為強調語言程式的使用及應用,缺乏對各種演算法的內容做系統性及數學模型的介紹,這樣的學習會較流於表面,而無法學習到各個演算法的精華所在,也無法對各種演算法進行修正或是自創最好的演算法,這對大專院校學生在學習深度學習時,必定有所不足。 
 
  因此,本書之主要目的,即是提供深度學習領域內,各種演算的理論基礎及數學模型,提供讀者對於各種模型的深度理解,來瞭解各種演算法的精華所在。再輔以Python程式範例,一步步帶領讀者進入深度學習的世界。
 

詳細資料

  • ISBN:9789865023898
  • EISBN:9789865025090
  • 規格:普通級 / 初版
  • 出版地:台灣
  • 檔案格式:EPUB固定版型
  • 建議閱讀裝置:平板
  • TTS語音朗讀功能:無
  • 檔案大小:43.9MB

會員評鑑

5
1人評分
|
1則書評
|
立即評分
user-img
5.0
|
2020/07/24
數學的介紹很清晰
我覺得比一些中國出的深度學習理論的書強多了(往往有很多不通順的文句 還有被跳掉的推倒步驟)
對背後理論感興趣的人
這本書是不錯的參考書
展開

最近瀏覽

 

相關活動

  • 【科普、飲食、電腦】高寶電子書暢銷書展:人生就是選擇的總和,全展75折起
 

購物說明

使用電子書服務即為同意『博客來數位內容服務條款』請詳見客服中心說明。

自備暢通的網際網路連線及符合博客來支援的行動裝置、電腦作為閱讀工具,支援版本如下:

瀏覽器閱讀:無需安裝,即可閱讀。支援Safari (14以上版本)、Chrome (103以上版本) 、Edge瀏覽器 (106以上版本)。

APP閱讀:支援IOS13及Android 7以上系統。

電子書、 電子雜誌因版本屬性因素,恕無法比照紙本書籍提供MP3、DVD實體光碟,亦無提供相關影音檔案下載,請先確認無此需求再行下單購買。

請注意:

博客來電子書服務所使用之軟體程式及其支援行動裝置之可用版本隨時會更新調整,請隨時留意且主動查詢調整之內容。並請定時更新您的行動裝置作業系統版本,以確保本服務運作正常。若因個人裝置因素(如:其他應用程式衝突、裝置記憶體不足、行動裝置支援版本無法升級),無法使用博客來電子書閱讀服務或影響服務效能,需自行進行排除待符合博客來支援項目再行閱讀。

退換貨說明:

電子書購買前請務必先行試閱,不提供10天的猶豫期。

下列商品購買後博客來不提供10天的猶豫期,請務必詳閱商品說明並再次確認確有購買該項商品之需求及意願時始下單購買,有任何疑問並請先聯繫博客來客服詢問:

1.易於腐敗、保存期限較短或解約時即將逾期。
2.客製化之商品。
3.報紙、期刊或雜誌。
4.經消費者拆封之影音商品或電腦軟體。
5.下載版軟體、資訊及電子書、有聲書及影音.課程
6.涉及個人衛生,並經消費者拆封之商品,如:內衣褲、刮鬍刀…等。
7.藝文展覽票券、藝文表演票券。