年度百大_選書
數學,為什麼是現在這樣子?:一門不教公式,只講故事的數學課

數學,為什麼是現在這樣子?:一門不教公式,只講故事的數學課

The Story of MATHEMATICS:From creating the pyramids to exploring infinity

  • 定價:360
  • 優惠價:9324
  • 本商品單次購買10本8折288
  • 運送方式:
  • 臺灣與離島
  • 海外
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 可配送點:台灣、蘭嶼、綠島、澎湖、金門、馬祖
  • 台北、新北、基隆宅配快速到貨(除外地區)
載入中...
  • 分享
 

OKAPI 推薦

  • 《超展開數學教室》賴以威:數學很簡單,因為你不知道生活有多難

    文/汪正翔2015年07月06日

    「假設有一天我們去旅行。飛機失事降落在一望無際的草原上,我們走散了,在草原尋找對方的蹤影。這時候,我比較有可能找得到妳。」「為什麼,說不定是我會先找到你啊。」她賭氣地說。「因為我身高1.7公尺,妳的眼睛大概位在1.5公尺高。我們各自能看見的範圍大概是4.53公里和4.38公里,只要沒有障礙物 more
 

內容簡介

上完這門課,從此數學在你眼中不一樣!

專業審訂
洪萬生 臺灣師範大學數學系退休教授

口碑推薦
任維勇 北一女中數學科教師
陳記住 資深雲端數理課程教師

為什麼9再加1就要進位?
全世界通用的阿拉伯數字怎麼來?
誰規定+ - × ÷這樣寫?
你也許出了校門就忘記公式怎麼用,
但幫你把各種數學知識串連起來的許多故事,精采又奇妙,讓你聽過就想分享!

雲不是球形,山不是錐形,海岸線不是圓形,樹皮並不平滑,閃電的行進也不是一直線。
──曼德博

我們都學過數學,但卻很少有機會從故事的角度來重新認識它。

打從人類開始群居、慢慢發展出穩定的生活型態以來,許多有趣、酷炫的數學故事也開始在不同時空裡發生,互相交錯。今日的數學樣貌是千萬年來的人類智慧積累而成的,我們學習了很多「當代的數學」,卻往往忽略了時間軸上那些有趣的故事。

也許你不一定想知道複雜形狀的面積該怎麼計算,但是無數問題和解答如何不斷碰撞、演繹而來的故事要是錯過就太可惜了;也許你聽過「牛頓發明微積分」的說法,然而所謂「發明」並非憑空生出、靈光乍現的傑作,從「無」到「被發明」中間的知識缺口,比微積分的公式更迷人;也許你知道阿基米德提出了「無窮大」的概念,把人類的數字概念往前推進了一大步,但向上追溯數字的源頭,這還得從獵人與長毛象的故事說起……

數學的發展是連續而且美麗的,補足了這一塊迷人的故事拼圖,才更能了解數學的全貌。

 

作者介紹

作者簡介

安‧魯尼Anne Rooney
安‧魯尼在劍橋大學的三一學院拿到博士學位,專研中世紀文學。她曾經研究並教授中世紀的英國和法國文學,而現在是專職寫作者,和一群動物以及女兒們定居劍橋。她為幼小的孩童寫輕鬆易懂的書、為年長一點的孩子寫篇幅稍長的書,也為大人們寫任何形式和篇幅長短不拘的書籍。

譯者簡介

陳敏晧
畢業於宜蘭高中、國立高雄師範大學數學系、國立臺灣師範大學數學研究所教學碩士、國立清華大學歷史所博士(主修數學史與科學史)。曾任教於宜蘭縣羅東國中、蘭陽女中、佛光大學、宜蘭大學。對數學專題、數學史、科學史研究有濃厚興趣。

 

目錄

前言 數字的魔術
第一章 數字的起源
數字從哪裡來? ● 數字與進位 ● 更多的數字,有大有小
第二章 數字的實際運用
兩兩一組 ● 特殊的數字和數列 ● 不能說的數字
第三章 事物的形狀
測量每件事物 ● 早期幾何學 ● 三角學
第四章 圓圓不絕
曲線、圓和圓錐曲線 ● 立體幾何 ● 看見世界 ● 其他的世界
第五章 神奇的公式
古代世界中的代數 ● 代數的誕生 ● 寫下方程式
代數的時代 ● 這世界,永遠都不夠
第六章 掌握無限
與無限共處 ● 微積分的崛起 ● 不只微積分
第七章 數字的用途和娛樂
高興點!一切可能從未發生 ● 樣本和統計學 ● 統計數學
第八章 數字的毀滅
集合論 ● 愈漸模糊
第九章 證明吧
問題與證明 ● 合乎邏輯 ● 我們到底在談論什麼?
 

詳細資料

  • ISBN:9789862352236
  • 叢書系列:科普漫遊
  • 規格:平裝 / 208頁 / 23 x 17 cm / 普通級 / 全彩印刷 / 初版
  • 出版地:台灣
 

內容連載

第一章 數字的起源

四隻長毛象或更多長毛象?
想像一個原始人正看著一群可能的午餐──水牛,或是毛茸茸的長毛象。這群獵物數量龐大,而獵人既沒數字系統的概念也不會數數,他只知道,不管數量為何,落單的長毛象比較容易下手,而且如果有更多的夥伴,這項狩獵任務會變得更簡單、更安全。在「1」與「多於1」之間、「很多」和「很少」之間有明顯的差別,而這並非數數得來的。

在某些情況下,量化額外的長毛象或額外所需的狩獵人力是會有幫助的,但精確的數目仍非絕對必要,除非獵人想較量彼此的狩獵能力。

嘿!計算
接著,長毛象獵人把他們的牲畜安置妥當。當人們開始圈養動物時,就需要一種記錄方式,以檢視是否所有的綿羊、山羊、犛牛、豬都安全待在圍欄內,最簡單的方法是使用符木(tally)作為記錄,將每一隻動物對應為一個記號或一顆石頭。

這套方法不需要計數便能確認是否少了任何一隻動物,就如同我們可以一眼看出餐桌上一百個用餐位置是否都有用餐的人。此種一對一的對應方式人類在幼年便已習得,小孩子會將幾何形狀的積木放進形狀相應的洞口,或將玩具熊跟床配對等等,這是人類很早就領悟到的集合論基礎:一組物件能夠和另外一組物件做比較。如此一來,我們不需要數目的概念就能簡單處理集合問題,所以早期的農夫不需要計算,就能把卵石從這一堆搬移到另一堆。

對於記錄物件數目的需要促使最早的符號―即文字書寫的前身―出現。考古學家在捷克發現一根有三萬年歷史的狼骨,上面有刻痕,而且刻痕顯然為計數符號,這也是目前所知最早的數學物件。

從二到二的性質
能用來計算羊群數目的符木條(或卵石堆)亦能用做其他用途。如果手上有30 個代表綿羊的籌碼, 他們也能用以表示30 隻山羊、30 條魚或30 天,這些籌碼可能很早就被用來計算時間,例如小孩出生前的月數或天數,或從播種到收成的時間。當人們領悟到「30」的概念可以在物體間轉移並可獨立存在,這便預示了數目概念的來臨。人們不僅知道4 顆蘋果可以以1 人2 顆的方式分給2個人,更發現任何數量為4 個的物件都可以平分成2 組,每組2 個―確切而言,4「就是」2 個2。

在此階段,計數已不只是為了清點數量,而且每個數目都需要一個名稱。

第二章 數字的實際運用

不能說的數字
對數字下達禁令這件事聽起來也許很怪,但是已經發生了幾千年,且至今仍有此事。有些數被認為太難或太危險以致無法得到贊同,而被統治者或數學家放逐,但是,一個被禁的數不可能真正離開,它只是暫時潛入地下而已。

畢達哥拉斯數的淨化
古代希臘數學家畢達哥拉斯不認同無理數,而且在他的學校對負數下禁令。(無理數指的是無法以分數表示的數,所以0.75是有理數,因為它等於3∕4,但是圓周率π就是無理數。)畢達哥拉斯應該要知道這項禁令會引起許多問題,他的定理讓我們能從直角三角形的兩邊長算出第三邊長,但假設只承認有理數,就會立刻出問題,因為當直角三角形的兩邊長為1,其斜邊長便會是無理數 √2 ≒ 1.414。

畢達哥拉斯無法以邏輯方法證明無理數不存在,但是,當希帕索斯(Hippasus ofMetapontum, 約生於西元前五世紀)證明出√2 是無理數,並且與畢達哥拉斯辯駁無理數的存在時,據說他因此被淹死,為畢達哥拉斯所害。根據傳說,希帕索斯在船上展示他的發現,這個不明智之舉讓畢達哥拉斯將他拋出船外。

畢達哥拉斯對無理數的禁令是基於他的美學與哲學觀點。後來,基於政治、經濟和社會等等各種理由,後人也設法將某些數字或某些類型的數字宣布為不合法。

阿拉伯人v.s. 羅馬人
中世紀時期,歐洲對印度-阿拉伯數碼的傳入相當抗拒,但是此一新的數字系統能讓算術變得更容易,這使印度-阿拉伯數碼具有吸引力。印度-阿拉伯數碼使計算變得大眾化,但因為有一部分人希望繼續把持數字計算的使用,以作為精英份子的特別工具,因此使得這套數字系統被妖魔化。如果數學知識變得普及,權力的來源就會喪失,天主教會想藉由對數字的掌控來左右教育,並基於宗教立場反對從伊斯蘭世界來的數字系統,在當時,以算盤來研究數學的數學家是受到教會保護的。反對印度-阿拉伯數碼普及化的聲浪是如此強烈,謠傳當時使用它們的人甚至被當成異教徒燒死在火刑柱上,然而,商人與會計師都想要使用這個新的數字系統,因為那會使他們工作起來更方便,那些以印度-阿拉伯數碼來作運算的演算家(algorist)與那些使用算盤和羅馬數字的算盤家(abacist)交戰了好幾世紀,直到歐洲印刷術的出現,使宗教的管控力量再也無法阻攔算術方法的傳播。

最近瀏覽商品

 

相關活動

  • 晚安,床邊故事101夜~兒童故事小說|名人傳記|生活百科有聲書66折起
 

購物說明

若您具有法人身份為常態性且大量購書者,或有特殊作業需求,建議您可洽詢「企業採購」。 

退換貨說明 

會員所購買的商品均享有到貨十天的猶豫期(含例假日)。退回之商品必須於猶豫期內寄回。 

辦理退換貨時,商品必須是全新狀態與完整包裝(請注意保持商品本體、配件、贈品、保證書、原廠包裝及所有附隨文件或資料的完整性,切勿缺漏任何配件或損毀原廠外盒)。退回商品無法回復原狀者,恐將影響退貨權益或需負擔部分費用。 

訂購本商品前請務必詳閱商品退換貨原則 

  • 年度考試書展
  • 台漫大展
  • 我識全書系